Variational inference for estimating dynamic stochastic block models through an evolutionary algorithm
Luca Brusa () and
Fulvia Pennoni ()
Additional contact information
Luca Brusa: University of Milano-Bicocca
Fulvia Pennoni: University of Milano-Bicocca
Advances in Data Analysis and Classification, 2025, vol. 19, issue 2, No 7, 469-492
Abstract:
Abstract Dynamic temporal networks are important structures to capture node dependencies and their evolution over time. The dynamic stochastic block model, commonly used with longitudinal network data, is estimated maximizing the likelihood function through the variational expectation-maximization (VEM) algorithm. However, maximization is challenging due to the presence of multiple local maxima. In this paper, we first conduct a simulation study to assess the performance of six different parameter initialization strategies. Second, we introduce a novel specification of the VEM through a genetic algorithm, enabling a more comprehensive exploration of the parameter space. Results from both simulations and historical data on infectious disease transmission highlight the advantages of this approach in overcoming convergence to local maxima and improving node clustering in temporal network data.
Keywords: Genetic algorithm; Local maxima; Longitudinal networks; Node classification; Variational expectation-maximization algorithm; 62M05; 62H30; 65K10; 91D30 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11634-025-00634-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:19:y:2025:i:2:d:10.1007_s11634-025-00634-9
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-025-00634-9
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().