Preliminary estimators for a mixture model of ordinal data
Maria Iannario ()
Advances in Data Analysis and Classification, 2012, vol. 6, issue 3, 163-184
Abstract:
In this paper, we propose preliminary estimators for the parameters of a mixture distribution introduced for the analysis of ordinal data where the mixture components are given by a Combination of a discrete Uniform and a shifted Binomial distribution ( cub model). After reviewing some preliminary concepts related to the meaning of parameters which characterize such models, we introduce estimators which are related to the location and heterogeneity of the observed distributions, respectively, in order to accelerate the EM procedure for the maximum likelihood estimation. A simulation experiment has been performed to investigate their main features and to confirm their usefulness. A check of the proposal on real case studies and some comments conclude the paper. Copyright Springer-Verlag 2012
Keywords: Ordinal data; cub models; Preliminary estimators; 6207; 62E17; 62F10 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s11634-012-0111-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:6:y:2012:i:3:p:163-184
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-012-0111-5
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().