Non parametric statistical models for on-line text classification
Paola Cerchiello () and
Paolo Giudici
Advances in Data Analysis and Classification, 2012, vol. 6, issue 4, 277-288
Abstract:
Social media, such as blogs and on-line forums, contain a huge amount of information that is typically unorganized and fragmented. An important issue, that has been raising importance so far, is to classify on-line texts in order to detect possible anomalies. For example on-line texts representing consumer opinions can be, not only very precious and profitable for companies, but can also represent a serious damage if they are negative or faked. In this contribution we present a novel statistical methodology rooted in the context of classical text classification, in order to address such issues. In the literature, several classifiers have been proposed, among them support vector machine and naive Bayes classifiers. These approaches are not effective when coping with the problem of classifying texts belonging to an unknown author. To this aim, we propose to employ a new method, based on the combination of classification trees with non parametric approaches, such as Kruskal–Wallis and Brunner–Dette–Munk test. The main application of what we propose is the capability to classify an author as a new one, that is potentially trustable, or as an old one, that is potentially faked. Copyright Springer-Verlag Berlin Heidelberg 2012
Keywords: Non parametric statistical models; Kruskal–Wallis test; Brunner–Dette–Munk test; Text analysis; Opinion spam detection; 62G10; 62H30 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11634-012-0122-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:6:y:2012:i:4:p:277-288
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-012-0122-2
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().