A Monte Carlo evaluation of three methods to detect local dependence in binary data latent class models
Daniel Oberski (),
Geert Kollenburg () and
Jeroen Vermunt ()
Advances in Data Analysis and Classification, 2013, vol. 7, issue 3, 267-279
Abstract:
Binary data latent class analysis is a form of model-based clustering applied in a wide range of fields. A central assumption of this model is that of conditional independence of responses given latent class membership, often referred to as the “local independence” assumption. The results of latent class analysis may be severely biased when this crucial assumption is violated; investigating the degree to which bivariate relationships between observed variables fit this hypothesis therefore provides vital information. This article evaluates three methods of doing so. The first is the commonly applied method of referring the so-called “bivariate residuals” to a Chi-square distribution. We also introduce two alternative methods that are novel to the investigation of local dependence in latent class analysis: bootstrapping the bivariate residuals, and the asymptotic score test or “modification index”. Our Monte Carlo simulation indicates that the latter two methods perform adequately, while the first method does not perform as intended. Copyright Springer-Verlag Berlin Heidelberg 2013
Keywords: Conditional dependence; Latent variable models; Score test; Lagrange multiplier test; Modification index; Bivariate residuals; 62F40; 62F03; 62F99; 62H15; 62H17; 62H30 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11634-013-0146-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:7:y:2013:i:3:p:267-279
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-013-0146-2
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().