Energy-based function to evaluate data stream clustering
Marcelo Albertini () and
Rodrigo Mello ()
Advances in Data Analysis and Classification, 2013, vol. 7, issue 4, 435-464
Abstract:
Severe constraints imposed by the nature of endless sequences of data collected from unstable phenomena have pushed the understanding and the development of automated analysis strategies, such as data clustering techniques. However, current clustering validation approaches are inadequate to data streams due to they do not properly evaluate representation of behavior changes. This paper proposes a novel function to continuously evaluate data stream clustering inspired in Lyapunov energy functions used by techniques such as the Hopfield artificial neural network and the Bidirectional Associative Memory ( Bam). The proposed function considers three terms: i) the intra-cluster distance, which allows to evaluate cluster compactness; ii) the inter-cluster distance, which reflects cluster separability; and iii) entropy estimation of the clustering model, which permits the evaluation of the level of uncertainty in data streams. A first set of experiments illustrate the proposed function applied to scenarios of continuous evaluation of data stream clustering. Further experiments were conducted to compare this new function to well-established clustering indices and results confirm our proposal reflects the same information obtained with external clustering indices. Copyright Springer-Verlag Berlin Heidelberg 2013
Keywords: Machine learning; Data streams; Data clustering; Evaluation of data clustering; Lyapunov energy function; 62H30; 68T10; 91C20; 68T05 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s11634-013-0145-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:7:y:2013:i:4:p:435-464
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-013-0145-3
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().