EconPapers    
Economics at your fingertips  
 

Robust clustering around regression lines with high density regions

Andrea Cerioli () and Domenico Perrotta ()

Advances in Data Analysis and Classification, 2014, vol. 8, issue 1, 5-26

Abstract: Robust methods are needed to fit regression lines when outliers are present. In a clustering framework, outliers can be extreme observations, high leverage points, but also data points which lie among the groups. Outliers are also of paramount importance in the analysis of international trade data, which motivate our work, because they may provide information about anomalies like fraudulent transactions. In this paper we show that robust techniques can fail when a large proportion of non-contaminated observations fall in a small region, which is a likely occurrence in many international trade data sets. In such instances, the effect of a high-density region is so strong that it can override the benefits of trimming and other robust devices. We propose to solve the problem by sampling a much smaller subset of observations which preserves the cluster structure and retains the main outliers of the original data set. This goal is achieved by defining the retention probability of each point as an inverse function of the estimated density function for the whole data set. We motivate our proposal as a thinning operation on a point pattern generated by different components. We then apply robust clustering methods to the thinned data set for the purposes of classification and outlier detection. We show the advantages of our method both in empirical applications to international trade examples and through a simulation study. Copyright Springer 2014

Keywords: Anti-fraud; Concentrated noise; International trade; Orthogonal regression; Outlier detection; Robust clusterwise regression; TCLUST; Thinning; Trimming; 62H30; 62G35; 62G07; 62G08; 62H11; 62P20; 91B60 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11634-013-0151-5 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:8:y:2014:i:1:p:5-26

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-013-0151-5

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:8:y:2014:i:1:p:5-26