EconPapers    
Economics at your fingertips  
 

Graphical tools for model-based mixture discriminant analysis

Luca Scrucca

Advances in Data Analysis and Classification, 2014, vol. 8, issue 2, 147-165

Abstract: The paper introduces a methodology for visualizing on a dimension reduced subspace the classification structure and the geometric characteristics induced by an estimated Gaussian mixture model for discriminant analysis. In particular, we consider the case of mixture of mixture models with varying parametrization which allow for parsimonious models. The approach is an extension of an existing work on reducing dimensionality for model-based clustering based on Gaussian mixtures. Information on the dimension reduction subspace is provided by the variation on class locations and, depending on the estimated mixture model, on the variation on class dispersions. Projections along the estimated directions provide summary plots which help to visualize the structure of the classes and their characteristics. A suitable modification of the method allows us to recover the most discriminant directions, i.e., those that show maximal separation among classes. The approach is illustrated using simulated and real data. Copyright Springer-Verlag Berlin Heidelberg 2014

Keywords: Dimension reduction; Model-based discriminant analysis; Gaussian mixtures; Canonical variates for mixture modeling; 62H30 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11634-013-0147-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:8:y:2014:i:2:p:147-165

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-013-0147-1

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-30
Handle: RePEc:spr:advdac:v:8:y:2014:i:2:p:147-165