EconPapers    
Economics at your fingertips  
 

Probabilistic auto-associative models and semi-linear PCA

Serge Iovleff ()

Advances in Data Analysis and Classification, 2015, vol. 9, issue 3, 267-286

Abstract: Auto-associative models cover a large class of methods used in data analysis, including for example principal component analysis (PCA) and auto-associative neural networks. In this paper, we describe the general properties of these models when the projection component is linear and we propose and test an easy-to-implement probabilistic semi-linear auto-associative model in a Gaussian setting. We show that it is a generalization of the PCA model to the semi-linear case. Numerical experiments on simulated datasets and a real astronomical application highlight the interest of this approach. Copyright Springer-Verlag Berlin Heidelberg 2015

Keywords: Auto-associative models; Non-linear PCA; Dimension reduction; Probabilistic non-linear PCA; 62-07; 62H25 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s11634-014-0185-3 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:9:y:2015:i:3:p:267-286

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-014-0185-3

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:9:y:2015:i:3:p:267-286