A diffusion model for churn prediction based on sociometric theory
Uroš Droftina (),
Mitja Å Tular () and
Andrej Košir ()
Advances in Data Analysis and Classification, 2015, vol. 9, issue 3, 365 pages
Abstract:
Churn prediction has received much attention in the last decade. With the evolution of social networks and social network analysis tools in recent years, the consideration of social ties in churn prediction has proven promising. One possibility is to use energy diffusion models to model the spread of influence through a social network. This paper proposes a novel churn prediction diffusion model based on sociometric clique and social status theory. It describes the concept of energy in the diffusion model as an opinion of users, which is transformed to user influence using the derived social status function. Furthermore, a novel diffusion model prediction scheme applicable to a single user or a small subset of users is described: the Targeted User Subset Churn Prediction Scheme. The scheme allows fast churn prediction using limited computing resources. The diffusion model is evaluated on a real dataset of users obtained from the largest Slovenian mobile service provider, using the F-measure and lift curve. The empirical results show a significant improvement in prediction accuracy of the proposed method compared with the basic spreading activation technique (SPA) diffusion model. More specifically, our approach outperforms a basic SPA diffusion model by 116 % in terms of lift in the fifth percentile. Copyright The Author(s) 2015
Keywords: Diffusion model; Churn prediction; Sociometric clique; Social status; Telecommunications; 91D30 Social networks; 62-07 Data analysis; 62P30 Applications in engineering and industry; 05C85 Graph algorithms (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11634-014-0188-0 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:9:y:2015:i:3:p:341-365
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-014-0188-0
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().