EconPapers    
Economics at your fingertips  
 

Robust model-based clustering via mixtures of skew-t distributions with missing information

Wan-Lun Wang and Tsung-I Lin ()

Advances in Data Analysis and Classification, 2015, vol. 9, issue 4, 423-445

Abstract: Multivariate mixture modeling approach using the skew-t distribution has emerged as a powerful and flexible tool for robust model-based clustering. The occurrence of missing data is a ubiquitous problem in almost every scientific field. In this paper, we offer a computationally flexible EM-type procedure for learning multivariate skew-t mixture models to deal with missing data under missing at random mechanisms. Further, we present an information-based approach to approximating the asymptotic covariance matrix of the maximum likelihood estimators using the outer product of the scores. To assist the development and ease the implementation of our algorithm, two auxiliary permutation matrices are utilized for fast determination of the observed and missing parts of each observation. The practical usefulness of the proposed methodology is illustrated through simulations with varying proportions of artificial missing values and a real data example with genuine missing values. Copyright Springer-Verlag Berlin Heidelberg 2015

Keywords: Classifier; ECM algorithm; Imputation; Missing at random; MST distribution; 62H12; 62H30 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11634-015-0221-y (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:9:y:2015:i:4:p:423-445

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-015-0221-y

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:9:y:2015:i:4:p:423-445