Nonlinear surface regression with dimension reduction method
Takuma Yoshida ()
Additional contact information
Takuma Yoshida: Kagoshima University
AStA Advances in Statistical Analysis, 2017, vol. 101, issue 1, No 2, 29-50
Abstract:
Abstract This paper considers nonlinear regression analysis with a scalar response and multiple predictors. An unknown regression function is approximated by radial basis function models. The coefficients are estimated in the context of M-estimation. It is known that ordinary M-estimation leads to overfitting in nonlinear regression. The purpose of this paper is to construct a smooth estimator. The proposed method in this paper is conducted by a two-step procedure. First, the sufficient dimension reduction methods are applied to the response and radial basis functions for transforming the large number of radial bases to a small number of linear combinations of the radial bases without loss of information. In the second step, a multiple linear regression model between a response and the transformed radial bases is assumed and the ordinary M-estimation is applied. Thus, the final estimator is also obtained as a linear combination of radial bases. The validity and an asymptotic study of the proposed method are explored. A simulation and data example are addressed to confirm the behavior of the proposed method.
Keywords: Nonlinear surface regression; Sliced average variance estimation; Sliced inverse regression; Sufficient dimension reduction (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10182-016-0271-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:alstar:v:101:y:2017:i:1:d:10.1007_s10182-016-0271-2
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10182/PS2
DOI: 10.1007/s10182-016-0271-2
Access Statistics for this article
AStA Advances in Statistical Analysis is currently edited by Göran Kauermann and Yarema Okhrin
More articles in AStA Advances in Statistical Analysis from Springer, German Statistical Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().