EconPapers    
Economics at your fingertips  
 

Closure properties of classes of multiple testing procedures

Georg Hahn ()
Additional contact information
Georg Hahn: Imperial College London

AStA Advances in Statistical Analysis, 2018, vol. 102, issue 2, No 2, 167-178

Abstract: Abstract Statistical discoveries are often obtained through multiple hypothesis testing. A variety of procedures exists to evaluate multiple hypotheses, for instance the ones of Benjamini–Hochberg, Bonferroni, Holm or Sidak. We are particularly interested in multiple testing procedures with two desired properties: (solely) monotonic and well-behaved procedures. This article investigates to which extent the classes of (monotonic or well-behaved) multiple testing procedures, in particular the subclasses of so-called step-up and step-down procedures, are closed under basic set operations, specifically the union, intersection, difference and the complement of sets of rejected or non-rejected hypotheses. The present article proves two main results: First, taking the union or intersection of arbitrary (monotonic or well-behaved) multiple testing procedures results in new procedures which are monotonic but not well-behaved, whereas the complement or difference generally preserves neither property. Second, the two classes of (solely monotonic or well-behaved) step-up and step-down procedures are closed under taking the union or intersection, but not the complement or difference.

Keywords: Multiple hypothesis testing; Statistical significance; Step-up procedure; Set operations; Monotonicity; 62G10 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10182-017-0297-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:alstar:v:102:y:2018:i:2:d:10.1007_s10182-017-0297-0

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10182/PS2

DOI: 10.1007/s10182-017-0297-0

Access Statistics for this article

AStA Advances in Statistical Analysis is currently edited by Göran Kauermann and Yarema Okhrin

More articles in AStA Advances in Statistical Analysis from Springer, German Statistical Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:alstar:v:102:y:2018:i:2:d:10.1007_s10182-017-0297-0