Optimal designs for treatment comparisons represented by graphs
Samuel Rosa ()
Additional contact information
Samuel Rosa: Comenius University in Bratislava
AStA Advances in Statistical Analysis, 2018, vol. 102, issue 4, No 1, 479-503
Abstract:
Abstract Consider an experiment for comparing a set of treatments: in each trial, one treatment is chosen and its effect determines the mean response of the trial. We examine the optimal approximate designs for the estimation of a system of treatment contrasts under this model. These designs can be used to provide optimal treatment proportions in more general models with nuisance effects. For any system of pairwise treatment comparisons, we propose to represent such a system by a graph. Then, we represent the designs by the inverses of the vertex weights in the corresponding graph and we show that the values of the eigenvalue-based optimality criteria can be expressed using the Laplacians of the vertex-weighted graphs. We provide a graph theoretic interpretation of D-, A- and E-optimality for estimating sets of pairwise comparisons. We apply the obtained graph representation to provide optimality results for these criteria as well as for ’symmetric’ systems of treatment contrasts.
Keywords: Optimal design; Graph theory; Treatment contrast; System of interest (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10182-017-0312-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:alstar:v:102:y:2018:i:4:d:10.1007_s10182-017-0312-5
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10182/PS2
DOI: 10.1007/s10182-017-0312-5
Access Statistics for this article
AStA Advances in Statistical Analysis is currently edited by Göran Kauermann and Yarema Okhrin
More articles in AStA Advances in Statistical Analysis from Springer, German Statistical Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().