Maximum likelihood estimation for survey data with informative interval censoring
Angel G. Angelov () and
Magnus Ekström ()
Additional contact information
Angel G. Angelov: Umeå University
Magnus Ekström: Umeå University
AStA Advances in Statistical Analysis, 2019, vol. 103, issue 2, No 3, 217-236
Abstract:
Abstract Interval-censored data may arise in questionnaire surveys when, instead of being asked to provide an exact value, respondents are free to answer with any interval without having pre-specified ranges. In this context, the assumption of noninformative censoring is violated, and thus, the standard methods for interval-censored data are not appropriate. This paper explores two schemes for data collection and deals with the problem of estimation of the underlying distribution function, assuming that it belongs to a parametric family. The consistency and asymptotic normality of a proposed maximum likelihood estimator are proven. A bootstrap procedure that can be used for constructing confidence intervals is considered, and its asymptotic validity is shown. A simulation study investigates the performance of the suggested methods.
Keywords: Informative interval censoring; Maximum likelihood; Parametric estimation; Questionnaire surveys; Self-selected intervals (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10182-018-00329-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:alstar:v:103:y:2019:i:2:d:10.1007_s10182-018-00329-x
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10182/PS2
DOI: 10.1007/s10182-018-00329-x
Access Statistics for this article
AStA Advances in Statistical Analysis is currently edited by Göran Kauermann and Yarema Okhrin
More articles in AStA Advances in Statistical Analysis from Springer, German Statistical Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().