Variance formulas for estimated mean response and predicted response with external intervention based on the back-door criterion in linear structural equation models
Manabu Kuroki () and
Hisayoshi Nanmo ()
Additional contact information
Manabu Kuroki: Yokohama National University
Hisayoshi Nanmo: Yokohama National University
AStA Advances in Statistical Analysis, 2020, vol. 104, issue 4, No 6, 667-685
Abstract:
Abstract This paper considers a situation in which cause–effect relationships among variables can be described by a linear structural equation model (linear SEM) and the corresponding directed acyclic graph (DAG). By considering a set of covariates that satisfies the back-door criterion, we formulate (1) the variances of the estimated mean response and (2) the mean squared error (MSE) of the predicted response, with external intervention in which a treatment variable is set to be a certain constant value. The variance and MSE formulas proposed in this paper are exact, unlike those in most previous studies regarding the problem of estimating total effects. In addition, we compare the performance of the simple regression model with that of the predicted response with the external intervention. Furthermore, we apply the present results to statistical quality control.
Keywords: Causal effect; Identification; Path diagram; Structural causal model (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10182-020-00372-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:alstar:v:104:y:2020:i:4:d:10.1007_s10182-020-00372-7
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10182/PS2
DOI: 10.1007/s10182-020-00372-7
Access Statistics for this article
AStA Advances in Statistical Analysis is currently edited by Göran Kauermann and Yarema Okhrin
More articles in AStA Advances in Statistical Analysis from Springer, German Statistical Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().