Count outcome meta-analysis for comparing treatments by fusing mixed data sources: comparing interventions using across report information
Dankmar Böhning () and
Patarawan Sangnawakij ()
Additional contact information
Dankmar Böhning: University of Southampton
Patarawan Sangnawakij: Thammasat University
AStA Advances in Statistical Analysis, 2021, vol. 105, issue 1, No 3, 75-85
Abstract:
Abstract Assessing interventions applied to target populations is a matter of prime interest. Studies are usually undertaken to see whether an alternative intervention is superior (or at least equivalent) to a comparable standard intervention. This is typically achieved by comparing alternative and standard intervention within a given study, and the developed meta-analytic methodology is building on this assumption. Very little work has been delivered when studies only report results on one of the interventions only, but not on both. This is the situation we consider here, and it is motivated by study reports on two surgeries for treatment of asymptomatic antenatally diagnosed congenital lung malformations in young children. Reports are often only available for one of the two, and restricting analysis on those with results on both surgeries will restrict data to 33% of the potential sources. We show in this paper how data sources can be fused and under which condition this fusion will provide valid results. Application to the case study shows the potential gain of the suggested approach in reaching a more conclusive analysis. We argue that studies should best allow within-study comparison, but if only one intervention information is available (for example, as the required surgery expertise for the comparative intervention is not deliverable at the respective site), harnessing one-group information can provide additional insights.
Keywords: Meta-analysis; Data fusion; Mixed information (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10182-020-00370-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:alstar:v:105:y:2021:i:1:d:10.1007_s10182-020-00370-9
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10182/PS2
DOI: 10.1007/s10182-020-00370-9
Access Statistics for this article
AStA Advances in Statistical Analysis is currently edited by Göran Kauermann and Yarema Okhrin
More articles in AStA Advances in Statistical Analysis from Springer, German Statistical Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().