OLS Estimation of Markov switching VAR models: asymptotics and application to energy use
Maddalena Cavicchioli ()
Additional contact information
Maddalena Cavicchioli: University of Modena and Reggio Emilia
AStA Advances in Statistical Analysis, 2021, vol. 105, issue 3, No 3, 449 pages
Abstract:
Abstract We show that the ordinary least squares (OLS) estimates of population parameters for Markov switching vector autoregressive (MS VAR) models coincide with the maximum likelihood estimates. Then, we propose an algorithm in matrix form for the estimation of model parameters, and derive an explicit expression in closed-form for the asymptotic covariance matrix of the OLS estimator of such models. The obtained characterization of the asymptotic variance is new to our knowledge. It is easier to program than the usual approach based on second derivatives, and more accurate. Our theorems generalize the classical results known for a linear VAR process, and complete those existing in the literature on the estimation of the asymptotic covariance matrix for multivariate stationary time series. Numerical simulations are provided to illustrate the obtained theoretical results. Finally, an application on energy use and economic growth in the Euro area gives some insights on the nonlinear nature of the corresponding time series, and reproduces the major stylized facts.
Keywords: Markov switching VAR model; OLS estimator; Asymptotic covariance matrix; Energy use; Economic growth (search for similar items in EconPapers)
JEL-codes: C13 C32 C34 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10182-020-00383-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:alstar:v:105:y:2021:i:3:d:10.1007_s10182-020-00383-4
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10182/PS2
DOI: 10.1007/s10182-020-00383-4
Access Statistics for this article
AStA Advances in Statistical Analysis is currently edited by Göran Kauermann and Yarema Okhrin
More articles in AStA Advances in Statistical Analysis from Springer, German Statistical Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().