EconPapers    
Economics at your fingertips  
 

Clustering of extreme values: estimation and application

Marta Ferreira ()
Additional contact information
Marta Ferreira: Universidade do Minho

AStA Advances in Statistical Analysis, 2024, vol. 108, issue 1, No 4, 125 pages

Abstract: Abstract The extreme value theory (EVT) encompasses a set of methods that allow inferring about the risk inherent to various phenomena in the scope of economic, financial, actuarial, environmental, hydrological, climatic sciences, as well as various areas of engineering. In many situations the clustering effect of high values may have an impact on the risk of occurrence of extreme phenomena. For example, extreme temperatures that last over time and result in drought situations, the permanence of intense rains leading to floods, stock markets in successive falls and consequent catastrophic losses. The extremal index is a measure of EVT associated with the degree of clustering of extreme values. In many situations, and under certain conditions, it corresponds to the arithmetic inverse of the average size of high-value clusters. The estimation of the extremal index generally entails two sources of uncertainty: the level at which high observations are considered and the identification of clusters. There are several contributions in the literature on the estimation of the extremal index, including methodologies to overcome the aforementioned sources of uncertainty. In this work we will revisit several existing estimators, apply automatic choice methods, both for the threshold and for the clustering parameter, and compare the performance of the methods. We will end with an application to meteorological data.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10182-023-00474-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:alstar:v:108:y:2024:i:1:d:10.1007_s10182-023-00474-y

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10182/PS2

DOI: 10.1007/s10182-023-00474-y

Access Statistics for this article

AStA Advances in Statistical Analysis is currently edited by Göran Kauermann and Yarema Okhrin

More articles in AStA Advances in Statistical Analysis from Springer, German Statistical Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-06
Handle: RePEc:spr:alstar:v:108:y:2024:i:1:d:10.1007_s10182-023-00474-y