EconPapers    
Economics at your fingertips  
 

Using sequential statistical tests for efficient hyperparameter tuning

Philip Buczak (), Andreas Groll (), Markus Pauly (), Jakob Rehof () and Daniel Horn ()
Additional contact information
Philip Buczak: TU Dortmund University
Andreas Groll: TU Dortmund University
Markus Pauly: TU Dortmund University
Jakob Rehof: TU Dortmund University
Daniel Horn: TU Dortmund University

AStA Advances in Statistical Analysis, 2024, vol. 108, issue 2, No 10, 460 pages

Abstract: Abstract Hyperparameter tuning is one of the most time-consuming parts in machine learning. Despite the existence of modern optimization algorithms that minimize the number of evaluations needed, evaluations of a single setting may still be expensive. Usually a resampling technique is used, where the machine learning method has to be fitted a fixed number of k times on different training datasets. The respective mean performance of the k fits is then used as performance estimator. Many hyperparameter settings could be discarded after less than k resampling iterations if they are clearly inferior to high-performing settings. However, resampling is often performed until the very end, wasting a lot of computational effort. To this end, we propose the sequential random search (SQRS) which extends the regular random search algorithm by a sequential testing procedure aimed at detecting and eliminating inferior parameter configurations early. We compared our SQRS with regular random search using multiple publicly available regression and classification datasets. Our simulation study showed that the SQRS is able to find similarly well-performing parameter settings while requiring noticeably fewer evaluations. Our results underscore the potential for integrating sequential tests into hyperparameter tuning.

Keywords: Machine learning; Hyperparameter tuning; Sequential testing (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10182-024-00495-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:alstar:v:108:y:2024:i:2:d:10.1007_s10182-024-00495-1

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10182/PS2

DOI: 10.1007/s10182-024-00495-1

Access Statistics for this article

AStA Advances in Statistical Analysis is currently edited by Göran Kauermann and Yarema Okhrin

More articles in AStA Advances in Statistical Analysis from Springer, German Statistical Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-06
Handle: RePEc:spr:alstar:v:108:y:2024:i:2:d:10.1007_s10182-024-00495-1