Spatio-temporal modeling of particulate matter concentration through the SPDE approach
Michela Cameletti (),
Finn Lindgren (),
Daniel Simpson () and
Håvard Rue ()
AStA Advances in Statistical Analysis, 2013, vol. 97, issue 2, 109-131
Abstract:
In this work, we consider a hierarchical spatio-temporal model for particulate matter (PM) concentration in the North-Italian region Piemonte. The model involves a Gaussian Field (GF), affected by a measurement error, and a state process characterized by a first order autoregressive dynamic model and spatially correlated innovations. This kind of model is well discussed and widely used in the air quality literature thanks to its flexibility in modelling the effect of relevant covariates (i.e. meteorological and geographical variables) as well as time and space dependence. However, Bayesian inference—through Markov chain Monte Carlo (MCMC) techniques—can be a challenge due to convergence problems and heavy computational loads. In particular, the computational issue refers to the infeasibility of linear algebra operations involving the big dense covariance matrices which occur when large spatio-temporal datasets are present. The main goal of this work is to present an effective estimating and spatial prediction strategy for the considered spatio-temporal model. This proposal consists in representing a GF with Matérn covariance function as a Gaussian Markov Random Field (GMRF) through the Stochastic Partial Differential Equations (SPDE) approach. The main advantage of moving from a GF to a GMRF stems from the good computational properties that the latter enjoys. In fact, GMRFs are defined by sparse matrices that allow for computationally effective numerical methods. Moreover, when dealing with Bayesian inference for GMRFs, it is possible to adopt the Integrated Nested Laplace Approximation (INLA) algorithm as an alternative to MCMC methods giving rise to additional computational advantages. The implementation of the SPDE approach through the R-library INLA ( www.r-inla.org ) is illustrated with reference to the Piemonte PM data. In particular, providing the step-by-step R-code, we show how it is easy to get prediction and probability of exceedance maps in a reasonable computing time. Copyright Springer-Verlag 2013
Keywords: Hierarchical models; Integrated Nested Laplace Approximation; Particulate matter PM 10; Covariance functions; Gaussian fields; Gaussian Markov random fields (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10182-012-0196-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:alstar:v:97:y:2013:i:2:p:109-131
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10182/PS2
DOI: 10.1007/s10182-012-0196-3
Access Statistics for this article
AStA Advances in Statistical Analysis is currently edited by Göran Kauermann and Yarema Okhrin
More articles in AStA Advances in Statistical Analysis from Springer, German Statistical Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().