Prediction of particle pollution through spatio-temporal multivariate geostatistical analysis: spatial special issue
S. De Iaco (),
M. Palma () and
D. Posa ()
AStA Advances in Statistical Analysis, 2013, vol. 97, issue 2, 133-150
Abstract:
Vehicular traffic, industrial activity and street dust are important sources of atmospheric particles, which cause pollution and serious health problems, including respiratory illness. Hence, techniques for analyzing and modeling the spatio-temporal behavior of particulate matter (PM), in the recent statistical literature, represent an essential support for environmental and human health protection. In this paper, air pollution from particles with diameters smaller than 10 $${\rm \mu}$$ m and related meteorological variables, such as temperature and wind speed, measured during November 2009 in the south of Apulian region (Lecce, Brindisi, and Taranto districts) are studied. A thorough multivariate geostatistical analysis is proposed, where different tools for testing the symmetry assumption of the spatio-temporal linear coregionalization model (ST-LCM) are considered, as well as a recent fitting procedure of the ST-LCM, based on the simultaneous diagonalization of symmetric real-valued matrix variograms, is adopted and two non-separable classes of variogram models, the product–sum and Gneiting classes, are fitted to the basic components. The most significant aspects of this study are (a) the quantitative assessment of the assumption of symmetry of the ST-LCM, (b) the use of different non-separable spatio-temporal models for fitting the basic components of a ST-LCM and, more importantly, (c) the application of the spatio-temporal multivariate geostatistical analysis to predict particle pollution in one of the most polluted geographical area. Prediction maps for particle pollution levels with the corresponding validation results are given. Copyright Springer-Verlag Berlin Heidelberg 2013
Keywords: Particle pollution; Spatio-temporal linear coregionalization model; Simultaneous diagonalization; Fitting procedure (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10182-012-0199-0 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:alstar:v:97:y:2013:i:2:p:133-150
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10182/PS2
DOI: 10.1007/s10182-012-0199-0
Access Statistics for this article
AStA Advances in Statistical Analysis is currently edited by Göran Kauermann and Yarema Okhrin
More articles in AStA Advances in Statistical Analysis from Springer, German Statistical Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().