A practical approach for assessing the effect of grouping in hierarchical spatio-temporal models
Francesca Bruno (),
Daniela Cocchi () and
Lucia Paci ()
AStA Advances in Statistical Analysis, 2013, vol. 97, issue 2, 93-108
Abstract:
Hierarchical spatio-temporal models allow for the consideration and estimation of many sources of variability. A general spatio-temporal model can be written as the sum of a spatio-temporal trend and a spatio-temporal random effect. When spatial locations are considered to be homogeneous with respect to some exogenous features, the groups of locations may share a common spatial domain. Differences between groups can be highlighted both in the large-scale, spatio-temporal component and in the spatio-temporal dependence structure. When these differences are not included in the model specification, model performance and spatio-temporal predictions may be weak. This paper proposes a method for evaluating and comparing models that progressively include group differences. Hierarchical modeling under a Bayesian perspective is followed, allowing flexible models and the statistical assessment of results based on posterior predictive distributions. This procedure is applied to tropospheric ozone data in the Italian Emilia–Romagna region for 2001, where 30 monitoring sites are classified according to environmental laws into two groups by their relative position with respect to traffic emissions. Copyright Springer-Verlag 2013
Keywords: Spatio-temporal models; Hierarchical models; Groups of spatial sites; Tropospheric ozone (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10182-012-0193-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:alstar:v:97:y:2013:i:2:p:93-108
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10182/PS2
DOI: 10.1007/s10182-012-0193-6
Access Statistics for this article
AStA Advances in Statistical Analysis is currently edited by Göran Kauermann and Yarema Okhrin
More articles in AStA Advances in Statistical Analysis from Springer, German Statistical Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().