The Contributions of Muscle and Machine Work to Land and Labor Productivity in World Agriculture Since 1800
Paul Steenwyk (),
Matthew Kuperus Heun,
Paul Brockway,
Tânia Sousa and
Sofia Henriques
Additional contact information
Paul Steenwyk: Calvin University
Matthew Kuperus Heun: Calvin University
Paul Brockway: University of Leeds
Tânia Sousa: University of Lisbon
Biophysical Economics and Resource Quality, 2022, vol. 7, issue 2, 1-17
Abstract:
Abstract Since 1800, there have been enormous changes in mechanical technologies farmers use and in the relative contributions of human and animal muscles and machines to farm work. We develop a database from 1800 to 2012 of on-farm physical work in world agriculture from muscles and machines. We do so to analyze how on-farm physical work has contributed to changes in land and human labor productivities. We find two distinct periods. First, from 1800 to around 1950, land productivity (measured as kcal food supply per hectare of cropland) was relatively stagnant at about 1.7 million kcal/ha, in part due to a scarcity of on-farm physical work. During this period, physical work was scarce because most of on-farm physical work (approximately 80% in 1950) was being powered by low power, low energy efficiency muscle work provided by humans and draft animals. From 1950 to 2012, land productivity nearly tripled as more machine-based work inputs became available. The additional machine-based work inputs have contributed to the growth in land and labor productivities, as they have enabled farmers to control more physical work enabling more irrigation and agrochemical applications. However, the tripling of land productivity has required a near 4.5-fold increase in physical work per hectare, suggesting diminishing returns. Farmers accomplished this extra work with less final energy because they transitioned from low-efficiency muscle work to high-efficiency machines which drove farm-wide energy conversion efficiency up fourfold from 1950 to 2012. By 1990, machine conversion efficiencies started to plateau. Given diminishing returns and plateauing efficiencies, we predict that fuel and electricity usage on farms will increase to continue raising land productivity.
Keywords: Muscle work; Agriculture; Energy transitions; Energy history; Economic history (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s41247-022-00096-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:bioerq:v:7:y:2022:i:2:d:10.1007_s41247-022-00096-z
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/41247
DOI: 10.1007/s41247-022-00096-z
Access Statistics for this article
Biophysical Economics and Resource Quality is currently edited by C.A.S. Hall and U. Bardi
More articles in Biophysical Economics and Resource Quality from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().