Simulating cold season snowpack: Impacts of snow albedo and multi-layer snow physics
D. Waliser,
J. Kim (),
Y. Xue,
Y. Chao,
A. Eldering,
R. Fovell,
A. Hall,
Qi Li,
K. Liou,
J. McWilliams,
S. Kapnick,
R. Vasic,
F. Sale and
Y. Yu
Climatic Change, 2011, vol. 109, issue 1, 95-117
Abstract:
This study used numerical experiments to investigate two important concerns in simulating the cold season snowpack: the impact of the alterations of snow albedo due to anthropogenic aerosol deposition on snowpack and the treatment of snow physics using a multi-layer snow model. The snow albedo component considered qualitatively future changes in anthropogenic emissions and the subsequent increase or decrease of black carbon deposition on the Sierra Nevada snowpack by altering the prescribed snow albedo values. The alterations in the snow albedo primarily affect the snowpack via surface energy budget with little impact on precipitation. It was found that a decrease in snow albedo (by as little as 5–10% of the reference values) due to an increase in local emissions enhances snowmelt and runoff (by as much as 30–50%) in the early part of a cold season, resulting in reduced snowmelt-driven runoff (by as much as 30–50%) in the later part of the cold season, with the greatest impacts at higher elevations. An increase in snow albedo associated with reduced anthropogenic emissions results in the opposite effects. Thus, the most notable impact of the decrease in snow albedo is to enhance early-season snowmelt and to reduce late-season snowmelt, resulting in an adverse impact on warm season water resources in California. The timing of the sensitivity of snow water equivalent (SWE), snowmelt, and runoff vary systematically according to terrain elevation; as terrain elevation increases, the peak response of these fields occurs later in the cold season. The response of SWE and surface energy budget to the alterations in snow albedo found in this study shows that the effects of snow albedo on snowpack are further enhanced via local snow-albedo feedback. Results from this experiment suggest that a reduction in local emissions, which would increase snow albedo, could alleviate the early snowmelt and reduced runoff in late winter and early spring caused by global climate change, at least partially. The most serious uncertainties associated with this part of the study are a quantification of the relationship between the amount of black carbon deposition and snow albedo—a subject of future study. The comparison of the spring snowpack simulated with a single- and multi-layer snow model during the spring of 1998 shows that a more realistic treatment of snow physics in a multi-layer snow model could improve snowpack simulations, especially during spring when snow ablation is significant, or in conjunction with climate change projections. Copyright Springer Science+Business Media B.V. 2011
Date: 2011
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-011-0312-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:109:y:2011:i:1:p:95-117
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-011-0312-5
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().