EconPapers    
Economics at your fingertips  
 

Multisite statistical downscaling model for daily precipitation combined by multivariate multiple linear regression and stochastic weather generator

D. Jeong (), A. St-Hilaire, T. Ouarda and P. Gachon

Climatic Change, 2012, vol. 114, issue 3, 567-591

Abstract: This study provides a multi-site hybrid statistical downscaling procedure combining regression-based and stochastic weather generation approaches for multisite simulation of daily precipitation. In the hybrid model, the multivariate multiple linear regression (MMLR) is employed for simultaneous downscaling of deterministic series of daily precipitation occurrence and amount using large-scale reanalysis predictors over nine different observed stations in southern Québec (Canada). The multivariate normal distribution, the first-order Markov chain model, and the probability distribution mapping technique are employed for reproducing temporal variability and spatial dependency on the multisite observations of precipitation series. The regression-based MMLR model explained 16 % ~ 22 % of total variance in daily precipitation occurrence series and 13 % ~ 25 % of total variance in daily precipitation amount series of the nine observation sites. Moreover, it constantly over-represented the spatial dependency of daily precipitation occurrence and amount. In generating daily precipitation, the hybrid model showed good temporal reproduction ability for number of wet days, cross-site correlation, and probabilities of consecutive wet days, and maximum 3-days precipitation total amount for all observation sites. However, the reproducing ability of the hybrid model for spatio-temporal variations can be improved, i.e. to further increase the explained variance of the observed precipitation series, as for example by using regional-scale predictors in the MMLR model. However, in all downscaling precipitation results, the hybrid model benefits from the stochastic weather generator procedure with respect to the single use of deterministic component in the MMLR model. Copyright Springer Science+Business Media B.V. 2012

Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-012-0451-3 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:114:y:2012:i:3:p:567-591

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-012-0451-3

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:114:y:2012:i:3:p:567-591