Future heat vulnerability in California, Part II: projecting future heat-related mortality
Scott Sheridan (),
Michael Allen,
Cameron Lee and
Laurence Kalkstein
Climatic Change, 2012, vol. 115, issue 2, 326 pages
Abstract:
Through the 21 st century, a significant increase in heat events is likely across California (USA). Beyond any climate change, the state will become more vulnerable through demographic changes resulting in a rapidly aging population. To assess these impacts, future heat-related mortality estimates are derived for nine metropolitan areas in the state for the remainder of the century. Heat-related mortality is first assessed by initially determining historical weather-type mortality relationships for each metropolitan area. These are then projected into the future based on predicted weather types created in Part I. Estimates account for several levels of uncertainty: for each metropolitan area, mortality values are produced for five different climate model-scenarios, three different population projections (along with a constant-population model), and with and without partial acclimatization. Major urban centers could have a greater than tenfold increase in short-term increases in heat-related mortality in the over 65 age group by the 2090s. Copyright Springer Science+Business Media B.V. 2012
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-012-0437-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:115:y:2012:i:2:p:311-326
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-012-0437-1
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().