EconPapers    
Economics at your fingertips  
 

Climate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetle

Lorenzo Marini (), Matthew Ayres, Andrea Battisti and Massimo Faccoli

Climatic Change, 2012, vol. 115, issue 2, 327-341

Abstract: Temperature warming and the increased frequency of climatic anomalies are expected to trigger bark beetle outbreaks with potential severe consequences on forest ecosystems. We characterized the combined effects of climatic factors and density-dependent feedbacks on forest damage caused by Ips typographus (L.), one of the most destructive pests of European spruce forests, and tested whether climate modified the interannual variation in the altitudinal outbreak range of the species. We analyzed a 16-year time-series from the European Alps of timber loss in Picea abies Karsten forests due to I. typographus attacks and used a discrete population model and an information theoretic approach to compare multiple competing hypotheses. The occurrence of dry summers combined with warm temperatures appeared as the main abiotic triggers of severity of outbreaks. We also found an endogenous negative feedback with a 2-year lag suggesting a potential important role of natural enemies. Forest damage per hectare averaged 7-fold higher where spruce was planted in sites warmer than those within its historical climatic range. Dry summers, but not temperature, was related to upward shifts in the altitudinal outbreak range. Considering the potential increased susceptibility of spruce forests to insect outbreaks due to climate change, there is growing value in mitigating these effects through sustainable forest management, which includes avoiding the promotion of spruce outside its historical climatic range. Copyright Springer Science+Business Media B.V. 2012

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-012-0463-z (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:115:y:2012:i:2:p:327-341

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-012-0463-z

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:115:y:2012:i:2:p:327-341