An integrated approach to assessing 21st century climate change over the contiguous U.S. using the NARCCAP RCM output
N. Elguindi () and
A. Grundstein
Climatic Change, 2013, vol. 117, issue 4, 809-827
Abstract:
We utilize a revised Thornthwaite climate classification system for model intercomparisons and to visualize future climate change. This classification system uses an improved moisture factor that accounts for both evapotranspiration and precipitation, a thermal index based on potential evapotranspiration, and even intervals between categories for ease of interpretation. The use of climate types is a robust way to assess a model’s ability to reproduce mutlivariate conditions. We compare output from multiple regional climate models (RCMs) participating in NARCCAP (North American Regional Climate Change Assessment Program) as well as their coarser driving general circulation models (GCMs). Overall, the RCM ensemble does a good job in reproducing the main features of U.S. climate types. The “added-value” gained by downscaling with RCMs is significant, particularly in topographic regions such as the west coast and Appalachian Mountains. Ensemble model output from the scenario simulations indicates a recession of cold climate zones across the eastern U.S. and northern tier of the country as well as in mountainous areas. Projections also indicate the development of a novel climate zone, the torrid climate, across southern portions of the country. In addition, the U.S. will become drier, particularly across the Midwest as the moisture boundary shifts eastward, and in the the Appalachian region. Climate types in the Pacific Northwest, however, will not change greatly. Finally, we demonstrate possible applications for the forecast climate types and associated output variables. Copyright Springer Science+Business Media B.V. 2013
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-012-0552-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:117:y:2013:i:4:p:809-827
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-012-0552-z
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().