Future projections and uncertainty assessment of extreme rainfall intensity in the United States from an ensemble of climate models
Jianting Zhu (),
William Forsee,
Rina Schumer and
Mahesh Gautam
Climatic Change, 2013, vol. 118, issue 2, 469-485
Abstract:
Changes in climate are expected to lead to changes in the characteristics extreme rainfall frequency and intensity. In this study, we propose an integrated approach to explore potential changes in intensity-duration-frequency (IDF) relationships. The approach incorporates uncertainties due to both the short simulation periods of regional climate models (RCMs) and the differences in IDF curves derived from multiple RCMs in the North American Regional Climate Change Assessment Program (NARCCAP). The approach combines the likelihood of individual RCMs according to the goodness of fit between the extreme rainfall intensities from the RCMs’ historic runs and those from the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) data set and Bayesian model averaging (BMA) to assess uncertainty in IDF predictions. We also partition overall uncertainties into within-model uncertainty and among-model uncertainty. Results illustrate that among-model uncertainty is the dominant source of the overall uncertainty in simulating extreme rainfall for multiple locations in the U.S., pointing to the difficulty of predicting future climate, especially extreme rainfall regimes. For all locations a more intense extreme rainfall occurs in future climate; however the rate of increase varies among locations. Copyright Springer Science+Business Media Dordrecht 2013
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-012-0639-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:118:y:2013:i:2:p:469-485
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-012-0639-6
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().