Climate consequences of natural gas as a bridge fuel
Michael Levi ()
Climatic Change, 2013, vol. 118, issue 3, 609-623
Abstract:
Many have recently speculated that natural gas might become a “bridge fuel”, smoothing a transition of the global energy system from fossil fuels to zero carbon energy by temporarily offsetting the decline in coal use. Others have contended that such a bridge is incompatible with oft-discussed climate objectives and that methane leakage from natural gas system may eliminate any advantage that natural gas has over coal. Yet global climate stabilization scenarios where natural gas provides a substantial bridge are generally absent from the literature, making study of gas as a bridge fuel difficult. Here we construct a family of such scenarios and study some of their properties. In the context of the most ambitious stabilization objectives (450 ppm CO 2 ), and absent carbon capture and sequestration, a natural gas bridge is of limited direct emissions-reducing value, since that bridge must be short. Natural gas can, however, play a more important role in the context of more modest but still stringent objectives (550 ppm CO 2 ), which are compatible with longer natural gas bridges. Further, contrary to recent claims, methane leakage from natural gas operations is unlikely to strongly undermine the climate benefits of substituting gas for coal in the context of bridge fuel scenarios. Copyright Springer Science+Business Media Dordrecht 2013
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-012-0658-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:118:y:2013:i:3:p:609-623
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-012-0658-3
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().