EconPapers    
Economics at your fingertips  
 

A cautionary note on automated statistical downscaling methods for climate change

Francisco Estrada, Víctor Guerrero, Carlos Gay-García and Benjamín Martínez-López

Climatic Change, 2013, vol. 120, issue 1, 263-276

Abstract: The urge for higher resolution climate change scenarios has been widely recognized, particularly for conducting impact assessment studies. Statistical downscaling methods have shown to be very convenient for this task, mainly because of their lower computational requirements in comparison with nested limited-area regional models or very high resolution Atmosphere–ocean General Circulation Models. Nevertheless, although some of the limitations of statistical downscaling methods are widely known and have been discussed in the literature, in this paper it is argued that the current approach for statistical downscaling does not guard against misspecified statistical models and that the occurrence of spurious results is likely if the assumptions of the underlying probabilistic model are not satisfied. In this case, the physics included in climate change scenarios obtained by general circulation models, could be replaced by spatial patterns and magnitudes produced by statistically inadequate models. Illustrative examples are provided for monthly temperature for a region encompassing Mexico and part of the United States. It is found that the assumptions of the probabilistic models do not hold for about 70 % of the gridpoints, parameter instability and temporal dependence being the most common problems. As our examples reveal, automated statistical downscaling “black-box” models are to be considered as highly prone to produce misleading results. It is shown that the Probabilistic Reduction approach can be incorporated as a complete and internally consistent framework for securing the statistical adequacy of the downscaling models and for guiding the respecification process, in a way that prevents the lack of empirical validity that affects current methods. Copyright Springer Science+Business Media Dordrecht 2013

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-013-0791-7 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:120:y:2013:i:1:p:263-276

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-013-0791-7

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:120:y:2013:i:1:p:263-276