EconPapers    
Economics at your fingertips  
 

Incorporating uncertainty of future sea-level rise estimates into vulnerability assessment: A case study in Kahului, Maui

Hannah Cooper () and Qi Chen ()

Climatic Change, 2013, vol. 121, issue 4, 635-647

Abstract: Accurate sea-level rise (SLR) vulnerability assessments are essential in developing effective management strategies for coastal systems at risk. In this study, we evaluate the effect of combining vertical uncertainties in Light Detection and Ranging (LiDAR) elevation data, datum transformation and future SLR estimates on estimating potential land area and land cover loss, and whether including uncertainty in future SLR estimates has implications for adaptation decisions in Kahului, Maui. Monte Carlo simulation is used to propagate probability distributions through our inundation model, and the output probability surfaces are generalized as areas of high and low probability of inundation. Our results show that considering uncertainty in just LiDAR and transformation overestimates vulnerable land area by about 3 % for the high probability threshold, resulting in conservative adaptation decisions, and underestimates vulnerable land area by about 14 % for the low probability threshold, resulting in less reliable adaptation decisions for Kahului. Not considering uncertainty in future SLR estimates in addition to LiDAR and transformation has variable effect on SLR adaptation decisions depending on the land cover category and how the high and low probability thresholds are defined. Monte Carlo simulation is a valuable approach to SLR vulnerability assessments because errors are not required to follow a Gaussian distribution. Copyright Springer Science+Business Media Dordrecht 2013

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-013-0987-x (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:121:y:2013:i:4:p:635-647

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-013-0987-x

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:121:y:2013:i:4:p:635-647