A sensitivity-based approach to evaluating future changes in Colorado River discharge
Julie Vano () and
Dennis Lettenmaier ()
Climatic Change, 2014, vol. 122, issue 4, 634 pages
Abstract:
Projections of a drier, warmer climate in the U.S. Southwest would complicate management of the Colorado River system—yet these projections, often based on coarse resolution global climate models, are quite uncertain. We present an approach to understanding future Colorado River discharge based on land surface characterizations that map the Colorado River basin’s hydrologic sensitivities (e.g., changes in streamflow magnitude) to annual and seasonal temperature and precipitation changes. The approach uses a process-based macroscale land surface model (LSM; in this case, the Variable Infiltration Capacity hydrologic model, although methods are applicable to any LSM) to develop sensitivity maps (equivalent to a simple empirical model), and uses these maps to evaluate long-term annual streamflow responses to future precipitation and temperature change. We show that global climate model projections combined with estimates of hydrologic sensitivities, estimated for different seasons and at different change increments, can provide a basis for approximating cumulative distribution functions of streamflow changes similar to more common, computationally intensive full-simulation approaches that force the hydrologic model with downscaled future climate scenarios. For purposes of assessing risk, we argue that the sensitivity-based approach produces viable first-order estimates that can be easily applied to newly released climate information to assess underlying drivers of change and bound, at least approximately, the range of future streamflow uncertainties for water resource planners. Copyright Springer Science+Business Media Dordrecht 2014
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-013-1023-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:122:y:2014:i:4:p:621-634
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-013-1023-x
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().