Faster growth in warmer winters for large trees in a Mediterranean-climate ecosystem
Seth Bigelow (),
Michael Papaik,
Caroline Caum and
Malcolm North
Climatic Change, 2014, vol. 123, issue 2, 215-224
Abstract:
Large trees (>76 cm breast-height diameter) are vital components of Sierra Nevada/Cascades mixed-conifer ecosystems because of their fire resistance, ability to sequester large amounts of carbon, and role as preferred habitat for sensitive species such as the California spotted owl. To investigate the likely performance of large trees in a rapidly changing climate, we analyzed growth rings of five conifer species against 20th century climate trends from local weather stations. Over the local station period of record, there were no temporal trends in precipitation, but maximum temperatures increased by 0.10 to 0.13 °C/decade (summer and autumn), and minimum temperatures increased by 0.11 to 0.19 °C/decade in all seasons. All species responded positively to precipitation, but more variation was explained by a significant positive response to minimum winter temperatures. High maximum summer temperature adversely affected growth of two species, and maximum spring temperatures in the year prior to ring formation were negatively associated with growth of one species. The strong coherent response to increasing minimum temperatures bodes well for growth of large trees in Sierra/Cascades region mixed conifer forest under continued climatic warming, but these trees will still be under threat by the increased fire intensity that is a indirect effect of warming. Copyright Springer Science+Business Media Dordrecht (outside the USA) 2014
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-014-1060-0 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:123:y:2014:i:2:p:215-224
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-014-1060-0
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().