EconPapers    
Economics at your fingertips  
 

Improving resolution of a spatial air pollution inventory with a statistical inference approach

Joanna Horabik () and Zbigniew Nahorski

Climatic Change, 2014, vol. 124, issue 3, 575-589

Abstract: This paper presents a novel approach to allocation of spatially correlated data, such as emission inventories, to finer spatial scales, conditional on covariate information observable in a fine grid. Spatial dependence is modelled with the conditional autoregressive structure introduced into a linear model as a random effect. The maximum likelihood approach to inference is employed, and the optimal predictors are developed to assess missing values in a fine grid. An example of ammonia emission inventory is used to illustrate the potential usefulness of the proposed technique. The results indicate that inclusion of a spatial dependence structure can compensate for less adequate covariate information. For the considered ammonia inventory, the fourfold allocation benefited greatly from incorporation of the spatial component, while for the ninefold allocation this advantage was limited, but still evident. In addition, the proposed method allows correction of the prediction bias encountered for the upper range emissions in the linear regression models. Copyright The Author(s) 2014

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-013-1029-4 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:124:y:2014:i:3:p:575-589

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-013-1029-4

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:124:y:2014:i:3:p:575-589