Impact assessment of climate change, carbon dioxide fertilization and constant growing season on rice yields in China
Yongqiang Yu,
Wen Zhang () and
Yao Huang
Climatic Change, 2014, vol. 124, issue 4, 763-775
Abstract:
Rice is the staple food in China, and the country’s enlarging population puts increasing pressure on its rice production as well as on that of the world. In this study, we estimate the impact of climate change, CO 2 fertilization, crop adaptation and the interactions of these three factors on the rice yields of China using model simulation with four hypothetical scenarios. According to the results of the model simulation, the rice yields without CO 2 fertilization are predicted to decrease by 3.3 % in the 2040s. Considering a constant rice-growing season (GS), the rice yields are predicted to increase by 3.2 %. When the effect of CO 2 fertilization is integrated into the Agro-C model, the expected rice yields increase by 20.9 %. When constant GS and CO 2 fertilization are both integrated into the model, the predicted rice yield increases by 28.6 %. In summary, the rice yields in China are predicted to decrease in the 2040s by 0.22 t/ha due to climate change, to increase by 0.44 t/ha due to a constant GS and to increase by 1.65 t/ha due to CO 2 fertilization. The benefits of crop adaptation would completely offset the negative impact of climate change. In the future, the most of the positive effects of climate change are expected to occur in northeastern and northwestern China, and the expansion of rice cultivation in northeastern China should further enhance the stability of rice production in China. Copyright Springer Science+Business Media Dordrecht 2014
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-014-1129-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:124:y:2014:i:4:p:763-775
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-014-1129-9
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().