A spatial and temporal drought risk assessment of three major tree species in Britain using probabilistic climate change projections
Michal Petr (),
Luc Boerboom (),
Anne Veen () and
Duncan Ray ()
Climatic Change, 2014, vol. 124, issue 4, 803 pages
Abstract:
Probabilistic climate data have become available for the first time through the UK Climate Projections 2009, so that the risk of change in tree growth can be quantified. We assessed the drought risk spatially and temporally using drought probabilities calculated from the weather generator data and tree species vulnerabilities using Ecological Site Classification model across Britain. We evaluated the drought impact on the potential yield class of three major tree species (Picea sitchensis, Pinus sylvestris, and Quercus robur), which cover around 59 % (400,700 ha) of state-managed forests, across the lowlands and uplands. We show that drought impacts result mostly in reduced tree growth over the next 80 years when using B1, A1B, and A1FI IPCC emissions scenarios, but varied spatially. We found a maximum reduction of 94 % but also a maximum increase of 56 % in potential stand yield class in the 2080s from the baseline climate (1961–1990). Furthermore, potential production over the state-managed forests for all three species in the 2080s is estimated to decrease due to drought by 42 % in the lowlands and by 32 % in the uplands in comparison to the baseline climate. Our results reveal that potential tree growth and forest production on the state-managed forests in Britain is likely to reduce, and indicate where and when adaptation measures are required. Moreover, this paper demonstrates the value of probabilistic climate projections for an important economic and environmental sector. Copyright The Author(s) 2014
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-014-1122-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:124:y:2014:i:4:p:791-803
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-014-1122-3
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().