EconPapers    
Economics at your fingertips  
 

Increased photosynthesis compensates for shorter growing season in subarctic tundra—8 years of snow accumulation manipulations

Julia Bosiö, Christian Stiegler (), Margareta Johansson, Herbert Mbufong and Torben Christensen

Climatic Change, 2014, vol. 127, issue 2, 334 pages

Abstract: This study was initiated to analyze the effect of increased snow cover on plant photosynthesis in subarctic mires underlain by permafrost. Snow fences were used to increase the accumulation of snow on a subarctic permafrost mire in northern Sweden. By measuring reflected photosynthetic active radiation (PAR) the effect of snow thickness and associated delay of the start of the growing season was assessed in terms of absorbed PAR and estimated gross primary production (GPP). Six plots experienced increased snow accumulation and six plots were untreated. Incoming and reflected PAR was logged hourly from August 2010 to October 2013. In 2010 PAR measurements were coupled with flux chamber measurements to assess GPP and light use efficiency of the plots. The increased snow thickness prolonged the duration of the snow cover in spring. The delay of the growing season start in the treated plots was 18 days in 2011, 3 days in 2012 and 22 days in 2013. Results show higher PAR absorption, together with almost 35 % higher light use efficiency, in treated plots compared to untreated plots. Estimations of GPP suggest that the loss in early season photosynthesis, due to the shortening of the growing season in the treatment plots, is well compensated for by the increased absorption of PAR and higher light use efficiency throughout the whole growing seasons. This compensation is likely to be explained by increased soil moisture and nutrients together with a shift in vegetation composition associated with the accelerated permafrost thaw in the treatment plots. Copyright The Author(s) 2014

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-014-1247-4 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:127:y:2014:i:2:p:321-334

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-014-1247-4

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:127:y:2014:i:2:p:321-334