Economics at your fingertips  

Adaptive stochastic integrated assessment modeling of optimal greenhouse gas emission reductions

Soheil Shayegh and Valerie Thomas ()

Climatic Change, 2015, vol. 128, issue 1, 15 pages

Abstract: We develop a method for finding optimal greenhouse gas reduction rates under ongoing uncertainty and re-evaluation of climate parameters over future decades. Uncertainty about climate change includes both overall climate sensitivity and the risk of extreme tipping point events. We incorporate both types of uncertainty into a stochastic model of climate and the economy that has the objective of reducing global greenhouse gas emissions at lowest overall cost over time. Solving this problem is computationally challenging; we introduce a two-step-ahead approximate dynamic programming algorithm to solve the finite time horizon stochastic problem. The uncertainty in climate sensitivity may narrow in the future as the behavior of the climate continues to be observed and as climate science progresses. To incorporate this future knowledge, we use a Bayesian framework to update the two correlated uncertainties over time. The method is illustrated with the DICE integrated assessment model, adding in current estimates of climate sensitivity uncertainty and tipping point risk with an endogenous updating of climate sensitivity based on the occurrence of tipping point events; the method could also be applied to other integrated assessment models with different characterizations of uncertainties and risks. Copyright Springer Science+Business Media Dordrecht 2015

Keywords: stochastic dynamic programing; approximate dynamic programing; Bayesian inference; tipping point; climate sensitivity (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5) Track citations by RSS feed

Downloads: (external link) (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from

DOI: 10.1007/s10584-014-1300-3

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

Page updated 2023-03-26
Handle: RePEc:spr:climat:v:128:y:2015:i:1:p:1-15