EconPapers    
Economics at your fingertips  
 

Spatially resolved estimation of ozone-related mortality in the United States under two representative concentration pathways (RCPs) and their uncertainty

Young-Min Kim, Ying Zhou, Yang Gao, Joshua Fu, Brent Johnson, Cheng Huang and Yang Liu ()

Climatic Change, 2015, vol. 128, issue 1, 84 pages

Abstract: The spatial pattern of the uncertainty in air pollution-related health impacts due to climate change has rarely been studied due to the lack of high-resolution model simulations, especially under the Representative Concentration Pathways (RCPs), the latest greenhouse gas emission pathways. We estimated future tropospheric ozone (O 3 ) and related excess mortality and evaluated the associated uncertainties in the continental United States under RCPs. Based on dynamically downscaled climate model simulations, we calculated changes in O 3 level at 12 km resolution between the future (2057 and 2059) and base years (2001–2004) under a low-to-medium emission scenario (RCP4.5) and a fossil fuel intensive emission scenario (RCP8.5). We then estimated the excess mortality attributable to changes in O 3 . Finally, we analyzed the sensitivity of the excess mortality estimates to the input variables and the uncertainty in the excess mortality estimation using Monte Carlo simulations. O 3 -related premature deaths in the continental U.S. were estimated to be 1312 deaths/year under RCP8.5 (95 % confidence interval (CI): 427 to 2198) and −2118 deaths/year under RCP4.5 (95 % CI: −3021 to −1216), when allowing for climate change and emissions reduction. The uncertainty of O 3 -related excess mortality estimates was mainly caused by RCP emissions pathways. Excess mortality estimates attributable to the combined effect of climate and emission changes on O 3 as well as the associated uncertainties vary substantially in space and so do the most influential input variables. Spatially resolved data is crucial to develop effective community level mitigation and adaptation policy. Copyright Springer Science+Business Media Dordrecht 2015

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-014-1290-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:128:y:2015:i:1:p:71-84

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-014-1290-1

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:128:y:2015:i:1:p:71-84