Downscaled estimates of late 21st century severe weather from CCSM3
Vittorio Gensini () and
Thomas Mote
Climatic Change, 2015, vol. 129, issue 1, 307-321
Abstract:
High-resolution dynamical downscaling is used to explore 2080–2090 peak-season hazardous convective weather as simulated from the Community Climate System Model version 3. Downscaling to 4 km grid spacing is performed using the Weather Research and Forecasting model. Tornadoes, damaging wind gusts, and large hail are simulated using a model proxy at hourly intervals for locations east of the U.S. Continental Divide. Future period results are placed into context using 1980–1990 output. While a limited sample size exists, a statistically significant increase in synthetic severe weather activity is noted in March, whereas event frequency is shown to slightly increase in April, and stay the same in May. These increases are primarily found in the Mississippi, Tennessee, and Ohio River valleys. Diurnally, most of the increase in hazardous convective weather activity is shown to be in the hours surrounding local sunset. Peak-season severe weather is also shown to be more variable in the future with a skewed potential toward larger counts. Finally, modeled proxy events are compared to environmental parameters known to generate hazardous convective weather activity. These environmental conditions explain over 80 % of the variance associated with modeled reports during March–May and show an increasing future tendency. Finally, challenges associated with dynamical downscaling for purposes of resolving severe local storms are discussed. Copyright Springer Science+Business Media Dordrecht 2015
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-014-1320-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:129:y:2015:i:1:p:307-321
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-014-1320-z
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().