Tropical hydropower in the clean development mechanism: Brazil’s Santo Antônio Dam as an example of the need for change
Philip Fearnside
Climatic Change, 2015, vol. 131, issue 4, 575-589
Abstract:
When carbon credit is granted for projects that would occur irrespective of any subsidy based on mitigation of global warming, the projects generate “hot air,” or credit without a real climate benefit. This is the case for tropical hydroelectric dams, which are now a major destination for funds under the Kyoto Protocol’s Clean Development Mechanism (CDM). The countries that purchase the credit generated by dams can emit more greenhouse gases without their being offset by genuine mitigation. The limited funds available for mitigation are also wasted on subsidizing dams that would be built anyway. Tropical dams also emit substantially more greenhouse gases than are recognized in CDM accounting procedures. Tropical hydroelectric emissions are also undercounted in national inventories of greenhouse gases under the United Nations Framework Convention on Climate Change, giving them a role in undermining the effectiveness of as-yet undecided emission limits. Brazil’s Santo Antônio Dam, now under construction on the Madeira River, provides a concrete example indicating the need for reform of CDM regulations by eliminating credit for hydroelectric dams. Copyright Springer Science+Business Media Dordrecht 2015
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-015-1393-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:131:y:2015:i:4:p:575-589
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-015-1393-3
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().