Exploring scenario and model uncertainty in cross-sectoral integrated assessment approaches to climate change impacts
R. Dunford (),
P. Harrison and
M. Rounsevell
Climatic Change, 2015, vol. 132, issue 3, 417-432
Abstract:
In this paper we present an uncertainty analysis of a cross-sectoral, regional-scale, Integrated Assessment Platform (IAP) for the assessment of climate change impacts, vulnerability and adaptation. The IAP couples simplified meta-models for a number of sectors (agriculture, forestry, urban development, biodiversity, flood and water resources management) within a user-friendly interface. Cross-sectoral interactions and feedbacks can be evaluated for a range of future scenarios with the aim of supporting a stakeholder dialogue and mutual learning. We present a method to address uncertainty in: i) future climate and socio-economic scenarios and ii) the interlinked network of meta-models that make up the IAP. A mixed-method approach is taken: formal numerical approaches, modeller interviews and network analysis are combined to provide a holistic uncertainty assessment that considers both quantifiable and un-quantifiable uncertainty. Results demonstrate that the combined quantitative-qualitative approach provides considerable advantages over traditional, validation-based uncertainty assessments. Combined fuzzy-set methods and network analysis methods allow maps of modeller certainty to be explored. The results indicate that validation statistics are not the only factors driving modeller certainty; a large range of other factors including the quality and availability of validation data, the meta-modelling process, inter-modeller trust, derivation methods, and pragmatic factors such as time, resources, skills and experience influence modeller certainty. We conclude that by identifying, classifying and exploring uncertainty in conjunction with the model developers, we can ensure not only that the modelling system itself improves, but that the decisions based on it can draw on the best available information: the projection itself, and a holistic understanding of the uncertainty associated with it. Copyright Springer Science+Business Media Dordrecht 2015
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-014-1211-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:132:y:2015:i:3:p:417-432
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-014-1211-3
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().