Towards a fair comparison of statistical and dynamical downscaling in the framework of the EURO-CORDEX initiative
A. Casanueva (),
S. Herrera,
J. Fernández and
J.M. Gutiérrez
Additional contact information
A. Casanueva: Universidad de Cantabria
S. Herrera: Universidad de Cantabria
J. Fernández: Universidad de Cantabria
J.M. Gutiérrez: CSIC-Universidad de Cantabria
Climatic Change, 2016, vol. 137, issue 3, No 8, 426 pages
Abstract:
Abstract Both statistical and dynamical downscaling methods are well established techniques to bridge the gap between the coarse information produced by global circulation models and the regional-to-local scales required by the climate change Impacts, Adaptation, and Vulnerability (IAV) communities. A number of studies have analyzed the relative merits of each technique by inter-comparing their performance in reproducing the observed climate, as given by a number of climatic indices (e.g. mean values, percentiles, spells). However, in this paper we stress that fair comparisons should be based on indices that are not affected by the calibration towards the observed climate used for some of the methods. We focus on precipitation (over continental Spain) and consider the output of eight Regional Climate Models (RCMs) from the EURO-CORDEX initiative at 0.44∘ resolution and five Statistical Downscaling Methods (SDMs) —analog resampling, weather typing and generalized linear models— trained using the Spain044 observational gridded dataset on exactly the same RCM grid. The performance of these models is inter-compared in terms of several standard indices —mean precipitation, 90th percentile on wet days, maximum precipitation amount and maximum number of consecutive dry days— taking into account the parameters involved in the SDM training phase. It is shown, that not only the directly affected indices should be carefully analyzed, but also those indirectly influenced (e.g. percentile-based indices for precipitation) which are more difficult to identify. We also analyze how simple transformations (e.g. linear scaling) could be applied to the outputs of the uncalibrated methods in order to put SDMs and RCMs on equal footing, and thus perform a fairer comparison.
Keywords: Regional Climate Models; Statistical downscaling; EURO-CORDEX; Precipitation indices (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10584-016-1683-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:137:y:2016:i:3:d:10.1007_s10584-016-1683-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-016-1683-4
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().