EconPapers    
Economics at your fingertips  
 

Mitigation of enteric methane emissions from global livestock systems through nutrition strategies

Dario Caro (), Ermias Kebreab and Frank M. Mitloehner
Additional contact information
Dario Caro: Aarhus University
Ermias Kebreab: University of California
Frank M. Mitloehner: University of California

Climatic Change, 2016, vol. 137, issue 3, No 12, 467-480

Abstract: Abstract Enteric methane (CH4) generated in the gastrointestinal tract of ruminant represents the source of the greatest direct greenhouse gas (GHG) released from the livestock sector. We evaluated the global potential reduction of enteric CH4 emissions released from dairy cattle through amendment of their traditional diets in 183 countries aggregated to 11 regions. Amending dairy cattle diets involves increasing the concentration of lipid (up to 6 %) and decreasing the concentration of fiber, without affecting the total gross energy intake (GEI). Enteric CH4 emissions were calculated by using a mathematical model developed to include dietary intervention. In 2012, we found a global potential reduction of 15.7 % of enteric CH4 emissions from dairy cattle. The highest potential reduction per unit of milk produced occurs in Africa followed by South America and Asia (55, 46 and 34 %, respectively). The amended diets proposed here, mostly affect the regions in which demand for animal source protein will be greatest in the future. Because lipid supplementation may result in an indirect effect on CH4 and nitrous oxide (N2O) emissions from manure management, they were also estimated. Methane emissions from manure management would decrease by 13 %, while N2O emissions would increase by 21 % due to diet amendment. On balance, the total potential reduction of GHG emissions through diet amendment was 104 MtCO2eq annually. Moreover, amending diets would increase global milk production by 13 %. This study evaluated a global potential reduction of GHG emissions directly released from dairy cattle, however, future advancements dealing with the analysis of the upstream emissions associated to these diet changes are needed.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10584-016-1686-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:137:y:2016:i:3:d:10.1007_s10584-016-1686-1

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-016-1686-1

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:137:y:2016:i:3:d:10.1007_s10584-016-1686-1