Robust decision making in data scarce contexts: addressing data and model limitations for infrastructure planning under transient climate change
Julie Shortridge (),
Seth Guikema and
Ben Zaitchik
Additional contact information
Julie Shortridge: Virginia Tech
Seth Guikema: University of Michigan
Ben Zaitchik: Johns Hopkins University
Climatic Change, 2017, vol. 140, issue 2, No 16, 323-337
Abstract:
Abstract In the face of deeply uncertain climate change projections, robust decision frameworks are becoming a popular tool for incorporating climate change uncertainty into water infrastructure planning. These methodologies have the potential to be particularly valuable in developing countries where extensive infrastructure development is still needed and uncertainties can be large. However, many applications of these methodologies have relied on a sophisticated process of climate model downscaling and impact modeling that may be unreliable in data-scarce contexts. In this study, we demonstrate a modified application of the robust decision making (RDM) methodology that is specifically tailored for application in data-scarce situations. This modification includes a novel method for generating transient climate change sequences that account for potential variable dependence but do not rely on detailed GCM projections, and an emphasis on identifying the relative importance of data limitations and uncertainty within an integrated modeling framework. We demonstrate this methodology in the Lake Tana basin in Ethiopia, showing how the approach can highlight the vulnerability of alternative plans across different time scales and identify priorities for research and model refinement. We find that infrastructure performance is particularly sensitive to uncertainty in streamflow model accuracy, irrigation efficiency, and evaporation rates, suggesting that additional research in these areas could provide valuable insights for long-term infrastructure planning. This work demonstrates how tailored application of robust decision frameworks using simple modeling approaches can provide decision support in data-scarce regions where more complex modeling and analysis may be impractical.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://link.springer.com/10.1007/s10584-016-1845-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:140:y:2017:i:2:d:10.1007_s10584-016-1845-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-016-1845-4
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().