EconPapers    
Economics at your fingertips  
 

Multimodel assessment of sensitivity and uncertainty of evapotranspiration and a proxy for available water resources under climate change

Vimal Mishra (), Rohini Kumar, Harsh L. Shah, Luis Samaniego, S. Eisner and Tao Yang
Additional contact information
Vimal Mishra: Civil Engineering, Indian Institute of Technology (IIT) Gandhinagar
Rohini Kumar: UFZ-Helmholtz Centre for Environmental Research
Harsh L. Shah: Civil Engineering, Indian Institute of Technology (IIT) Gandhinagar
Luis Samaniego: UFZ-Helmholtz Centre for Environmental Research
S. Eisner: Center for Environmental Systems Research (CESR)
Tao Yang: Hohai University

Climatic Change, 2017, vol. 141, issue 3, No 7, 465 pages

Abstract: Abstract Partitioning of precipitation (P) into actual evapotranspiration (ET) and runoff affects a proxy for water availability (P-ET) on land surface. ET accounts for more than 60% of global precipitation and affects both water and energy cycles. We study the changes in precipitation, air temperature, ET, and P-ET in seven large basins under the RCP 2.6 and 8.5 scenarios for the projected future climate. While a majority of studied basins is projected to experience a warmer and wetter climate, uncertainty in precipitation projections remains large in comparison to the temperature projections. Due to high uncertainty in ET, uncertainties in fraction of precipitation that is evaporated (ET/P) and a proxy for available water (P-ET) are also large under the projected future climate. Our assessment showed that under the RCP 8.5 scenario, global climate models are major contributors to uncertainties in ET (P-ET) simulations in the four (six) basins, while uncertainty due to hydrological models is prevailing or comparable in the other three (one) basins. The simulated ET is projected to increase under the warmer and wetter future climates in all the basins and periods under both RCPs. Regarding P-ET, it is projected to increase in five out of seven basins in the End term (2071–2099) under the RCP 8.5 scenario. Precipitation elasticity and temperature sensitivity estimated for ET were found to be positive in all the basins under the RCP 8.5 scenario. In contrast, the temperature sensitivity estimated for (P-ET) was found to be negative for all the basins under the RCP 8.5 scenario, indicating the role of increased energy availability and limited soil moisture. Our results highlight the need for improvements in climate and hydrological models with better representation of soil, vegetation, and cold season processes to reduce uncertainties in the projected ET and P-ET.

Keywords: Hydrological Model; Multimodel Ensemble; Projected Future Climate; Ganges Basin; Precipitation Projection (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10584-016-1886-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:141:y:2017:i:3:d:10.1007_s10584-016-1886-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-016-1886-8

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:141:y:2017:i:3:d:10.1007_s10584-016-1886-8