EconPapers    
Economics at your fingertips  
 

Investigating differences between event-as-class and probability density-based attribution statements with emerging climate change

Luke J. Harrington ()
Additional contact information
Luke J. Harrington: Victoria University of Wellington

Climatic Change, 2017, vol. 141, issue 4, No 4, 654 pages

Abstract: Abstract There is significant public and scientific interest in understanding whether and to what extent the severity and frequency of extreme events have increased in response to human influences on the climate system. As the science underpinning the field of event attribution continues to rapidly develop, there are growing expectations of faster and more accurate attribution statements to be delivered, even in the days to weeks after an extreme event occurs. As the research community looks to respond, a variety of approaches have been suggested, each with varying levels of conditioning to the observed state of the climate when the event of interest has occurred. One such approach to utilise unconditioned multi-model ensembles requires pre-computing estimates of the change in probability of occurrence for a wide range of possible ‘events’. In this study, we consider differences between event-as-class attribution statements with changes in the probability density of the distribution at the event threshold of interest. For the majority of extreme event attribution studies, it is likely that the two metrics are comparable once uncertainty estimates are considered. However, results show these two metrics can produce divergent answers from each other for moderate climatological anomalies if the present-day climate distribution experiences a substantial change in the underlying signal-to-noise ratio. As the emergent signals of climate change becomes increasingly clear, this study highlights the need for clear and explicit framing in the context of applying pre-computed attribution statements, particularly if attribution perspectives are to be included within the framework of future climate services.

Keywords: Event Threshold; Couple Model Intercomparison Project Phase; Model Ensemble; Factual Distribution; Anthropogenic Climate Change (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://link.springer.com/10.1007/s10584-017-1906-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:141:y:2017:i:4:d:10.1007_s10584-017-1906-3

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-017-1906-3

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:141:y:2017:i:4:d:10.1007_s10584-017-1906-3