Using population projections in climate change analysis
Daniel Rozell ()
Additional contact information
Daniel Rozell: Stony Brook University
Climatic Change, 2017, vol. 142, issue 3, No 16, 529 pages
Abstract:
Abstract The two leading sources of long-range population projections, the United Nations (UN) and the International Institute for Applied Systems Analysis (IIASA), currently disagree on the most likely end-of-the-century world population by over two billion people. Because climate change policy models are influenced by population uncertainty, this poses an underappreciated problem for analysts. Furthermore, long-range population projections have not been predictably stable over time and climate change policy models have not consistently used one set of population projections. This only increases the difficulty of comparing research results. Comparing the UN and IIASA population projections, the UN’s probabilistic population projections should be used with caution as they tend to understate the uncertainty in long-range population forecasts. Currently, the IIASA scenario projections are better suited to long-range climate change policy analysis. As a final recommendation, a simple demographic sub-model is proposed for use in cost-benefit climate change integrated assessment models that performs better than current alternatives.
Keywords: Carbon Emission; United Nations; Population Projection; Climate Change Policy; Integrate Assessment Model (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s10584-017-1968-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:142:y:2017:i:3:d:10.1007_s10584-017-1968-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-017-1968-2
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().