Leakage risks of geologic CO2 storage and the impacts on the global energy system and climate change mitigation
Hang Deng (),
Jeffrey M. Bielicki,
Michael Oppenheimer,
Jeffrey P. Fitts and
Catherine A. Peters
Additional contact information
Hang Deng: Princeton University
Jeffrey M. Bielicki: The Ohio State University
Michael Oppenheimer: Princeton University
Jeffrey P. Fitts: Princeton University
Catherine A. Peters: Princeton University
Climatic Change, 2017, vol. 144, issue 2, No 6, 163 pages
Abstract:
Abstract This study investigated how subsurface and atmospheric leakage from geologic CO2 storage reservoirs could impact the deployment of Carbon Capture and Storage (CCS) in the global energy system. The Leakage Risk Monetization Model was used to estimate the costs of leakage for representative CO2 injection scenarios, and these costs were incorporated into the Global Change Assessment Model. Worst-case scenarios of CO2 leakage risk, which assume that all leakage pathway permeabilities are extremely high, were simulated. Even with this extreme assumption, the associated costs of monitoring, treatment, containment, and remediation resulted in minor shifts in the global energy system. For example, the reduction in CCS deployment in the electricity sector was 3% for the “high” leakage scenario, with replacement coming from fossil fuel and biomass without CCS, nuclear power, and renewable energy. In other words, the impact on CCS deployment under a realistic leakage scenario is likely to be negligible. We also quantified how the resulting shifts will impact atmospheric CO2 concentrations. Under a carbon tax that achieves an atmospheric CO2 concentration of 480 ppm in 2100, technology shifts due to leakage costs would increase this concentration by less than 5 ppm. It is important to emphasize that this increase does not result from leaked CO2 that reaches the land surface, which is minimal due to secondary trapping in geologic strata above the storage reservoir. The overall conclusion is that leakage risks and associated costs will likely not interfere with the effectiveness of policies for climate change mitigation.
Keywords: Carbon capture; utilization and storage; Geologic CO2 storage; Leakage risk; Climate change mitigation; Integrated assessment modeling; GCAM; Carbon tax; Representative concentration pathways (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://link.springer.com/10.1007/s10584-017-2035-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:144:y:2017:i:2:d:10.1007_s10584-017-2035-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-017-2035-8
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().